From risk analysis to adversarial risk analysis

Part VII. Adversarial risk analysis

David Ríos, AXA-ICMAT Chair @ICMAT-CSIC and R. Academy

Which is the best security resource allocation in a railway network?

Railway Network as stations, lines (&hotspots)

Threats: Pickpocketing, Fare evasion, Terrorism, ...

Each element has a value

For each element, each threat, a predictive model of acts

Allocate security resources (constraints)

For each cell predict the impact of resource allocation

Optimal resource allocation

Which is the best security resource allocation in a railway network?

Railway Network as stations, lines (&hotspots)

Threats: Pickpocketing, Fare evasion, Terrorism, ...

Each element has a value

For each element, each threat, a predictive model of acts

Allocate security resources (constraints)

For each cell predict the impact of resource allocation

Optimal resource allocation

NB1: Bad guys operate intelligent and organisedly!!!

Which is the best security resource allocation in a railway network?

Railway Network as stations, lines (&hotspots)

Threats: Pickpocketing, Fare evasion, Terrorism, ...

Each element has a value

For each element, each threat, a predictive model of acts

Allocate security resources (constraints)

For each cell predict the impact of resource allocation

Optimal resource allocation

NB1: Bad guys operate intelligent and organisedly!!!

NB2: Different bad guys uncoordinated...

From RA to ARA...

Motivation

- 'The World's (23) Biggest Problems' (Lomborg)
 - Arms proliferation
 - Conflicts
 - Corruption
 - Terrorism
 - Drugs
 - Money laundering
- One of H2020 priorities (Secure Societies FCT, BD, DS)

Motivation

- RA extended to include adversaries ready to increase our risks
- S-11, M-11 lead to large security investments globally, some of them criticised
- Many modelling efforts to efficiently allocate such resources
- Parnell et al (2008) NAS review
 - Standard reliability/risk approaches not take into account intentionality
 - Game theoretic approaches. Common knowledge assumption...
 - Decision analytic approaches. Forecasting the adversary action...
- Merrick, Parnell (2011) review approaches commenting favourably on ARA

ARA

A framework to manage risks from actions of intelligent adversaries

Banks, Rios, DRI Adversarial Risk Analysis (2015) Taylor Francis

- One-sided prescriptive support
 - Use a SEU model
 - Treat the adversary's decision as uncertainties
- Method to predict adversary's actions
 - We assume the adversary is a expected utility maximizer
 - Model his decision problem

 - Assess his probabilities and utilitiesFind his action of maximum expected utility

(But other descriptive models are possible)

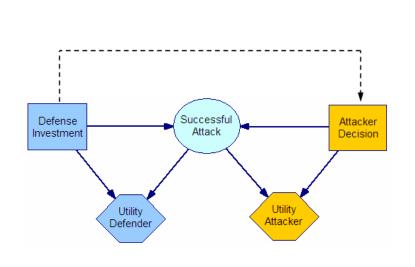
- Uncertainty in the Attacker's decision stems from

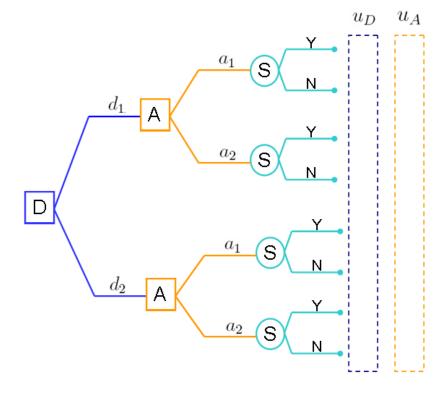
 - our uncertainty about his probabilities and utilities but this leads to a hierarchy of nested decision problems

(random, noninformative, level-k, heuristic, mirroring argument,...) vs (common knowledge)

- Kadane, Larkey (1982), Raiffa (1982, 2002)
- Lippman, McCardle (2012)
- Stahl and Wilson (1994, 1995) D. Wolpert (2012)
- Rothkopf (2007)

First Defender, afterwards Attacker





$$a^*(d) = \operatorname{argmax}_{a \in \mathcal{A}} \psi_A(d, a), \forall d \in \mathcal{D}$$

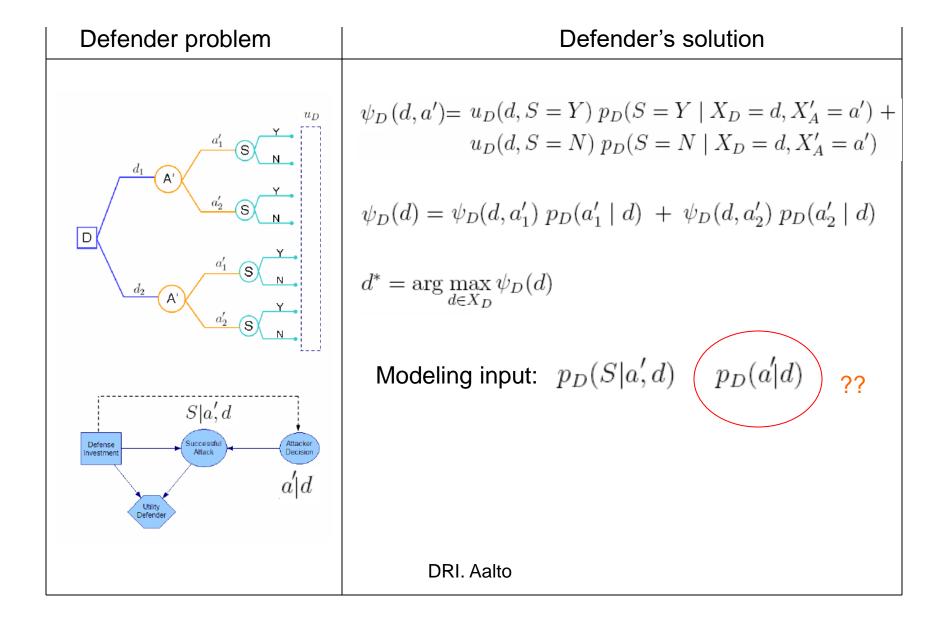
$$d^* = \operatorname{argmax}_{d \in \mathcal{D}} \psi_{\mathcal{D}}(d, a^*(d))$$

Nash Solution, SPE:

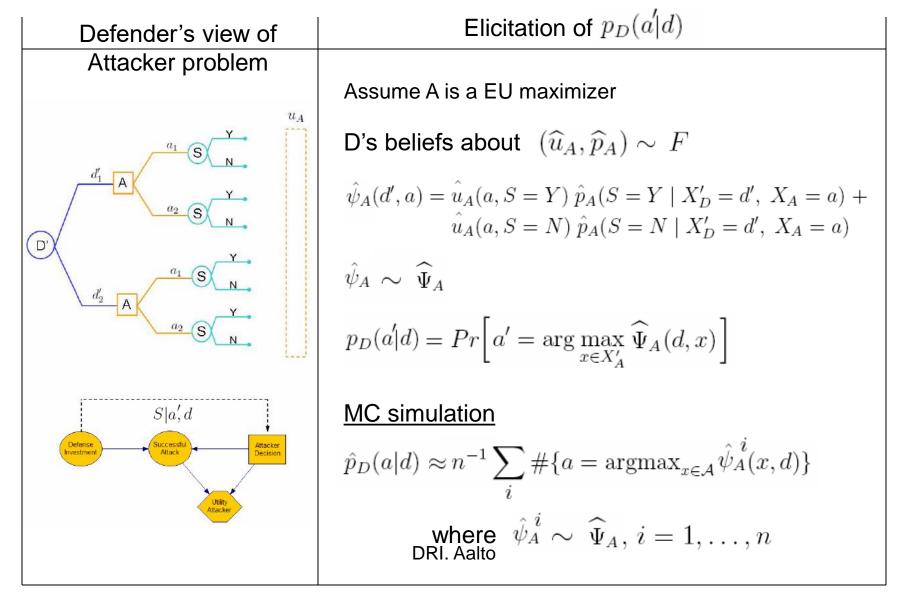
$$(d^*, a^*(d^*))$$

DRI. Aalto Standard
Game Theory Analysis

Supporting the Defender



Supporting the Defender: The assessment problem



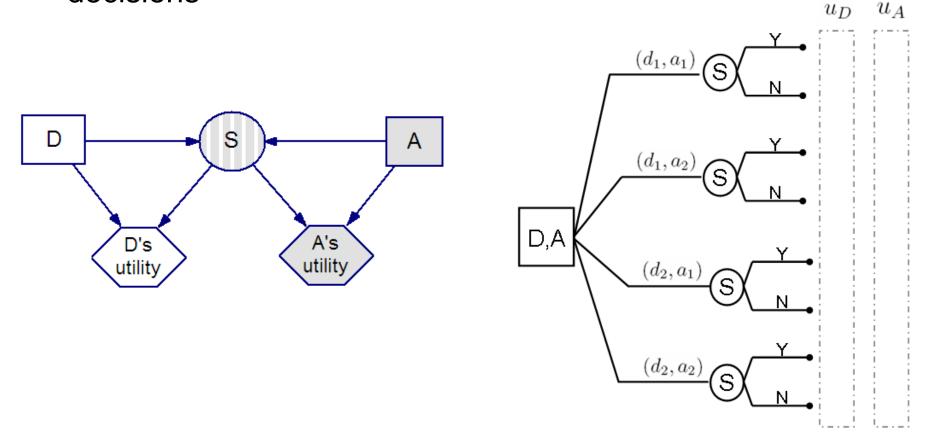
Sequential D-A

- 1. Assess (p_D, u_D) from the Defender
- 2. Assess $F = (P_A, U_A)$, describing the Defender's uncertainty about (p_A, u_A)
- 3. For each d, simulate to assess $p_D(A|d)$ as follows:
 - (a) Generate $(p_A^i, u_A^i) \sim F$, i = 1, ..., nSolve $a_i^*(d) = \operatorname{argmax}_{a \in \mathcal{A}} \psi_A^i(d, a)$
 - (b) Approximate $\hat{p}_D(A = a|d) = \#\{a = a_i^*(d)\}/n$
- 4. Solve the Defender's problem

$$d^* = \operatorname{argmax}_{d \in \mathcal{D}} \psi_D(d, a_1) \, \hat{p}_D(A = a_1 | d) + \psi_D(d, a_2) \, \hat{p}_D(A = a_2 | d)$$

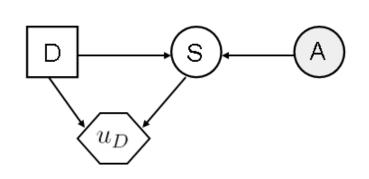
Simultaneous games

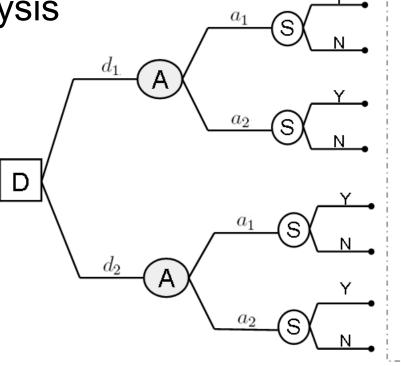
Decisions are made without knowing each other's decisions



Supporting the Defender

Defender's decision analysis





$$d^* = \operatorname{argmax}_{d \in \mathcal{D}} \sum_{a \in \mathcal{A}} \left[\sum_{s \in \{0,1\}} u_D(d,s) \ p_D(S = s \mid d, a) \right] \left(\pi_D(A = a) \right)$$

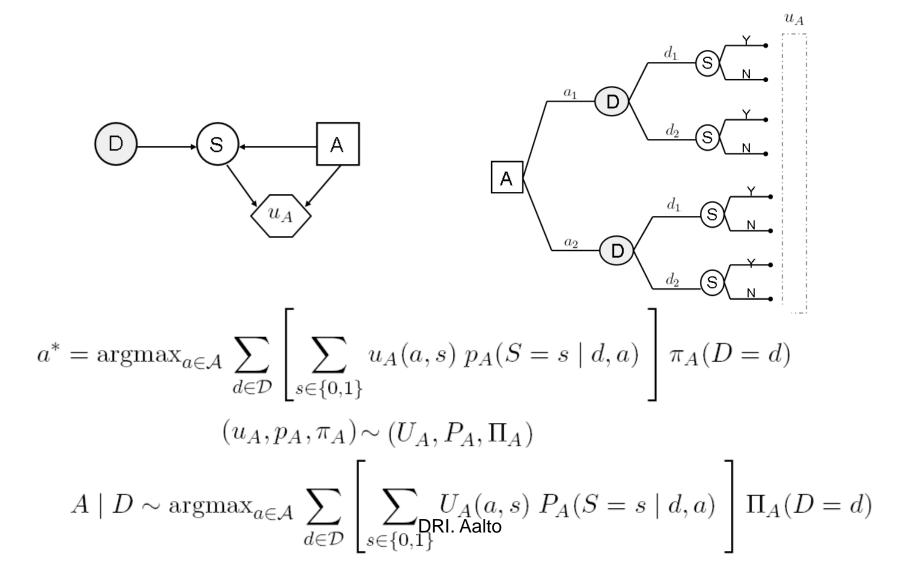
DRI. Aalto

How to assess it ??

 u_D

Assessing $\pi_D(A=a)$

Attacker's decision analysis as seen by the Defender



The assessment problem

- To predict Attacker's decision The Defender needs to solve Attacker's decision problem She needs to assess (u_A, p_A, π_A)
- Her beliefs about (u_A, p_A, π_A) are modeled through a probability distribution (U_A, P_A, Π_A)
- The assessment of $\Pi_A(D=d)$ requires deeper analysis
 - D's analysis of A's analysis of D's problem
- It leads to an infinite regress thinking-about-what-the-other-is-thinking-about...

Hierarchy of nested models

Repeat

Find $\Pi_{D^{i-1}}(A^i)$ by solving

$$A^i \mid D^i \sim \operatorname{argmax}_{a \in \mathcal{A}} \sum_{d \in \mathcal{D}} \left[\sum_{s \in \{0,1\}} U_A^i(a,s) \ P_A^i(S=s \mid d,a) \right] \Pi_{A^i}(D^i=d)$$
where $(U_A^i, P_A^i) \sim F^i$

Find $\Pi_{A^i}(D^i)$ by solving

$$D^i \mid A^{i+1} \sim \operatorname{argmax}_{d \in \mathcal{D}} \sum_{a \in \mathcal{A}} \left[\sum_{s \in \{0,1\}} U_D^i(d,s) \ P_D^i(S=s \mid d,a) \right] \Pi_{D^i}(A^{i+1}=a)$$
 where $(U_D^i, P_D^i) \sim G^i$

$$i = i + 1$$

Stop when the Defender has no more information about utilities and probabilities at some level of the recursive and probabilities. Level-k thinking

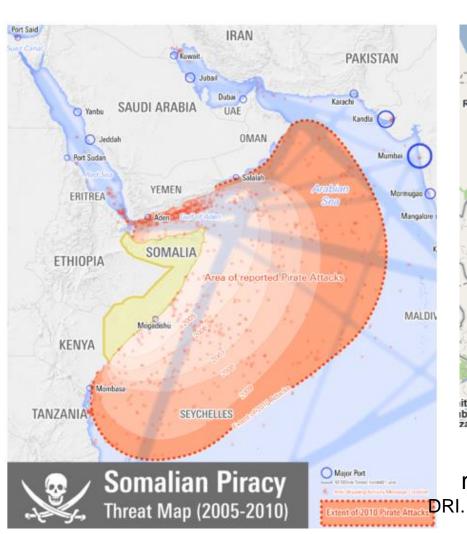
Opponent modeling

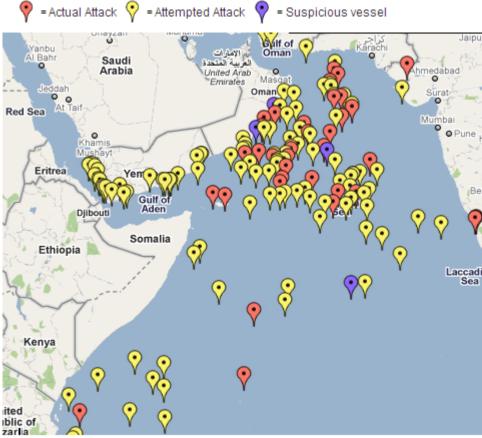
- Non strategic
- Nasheq
- Level-k
- Mirroreq
- Prospectmax

Reconcile them through a mixture

DRI, Banks, Rios (2015) RA

Piracy in Somalia





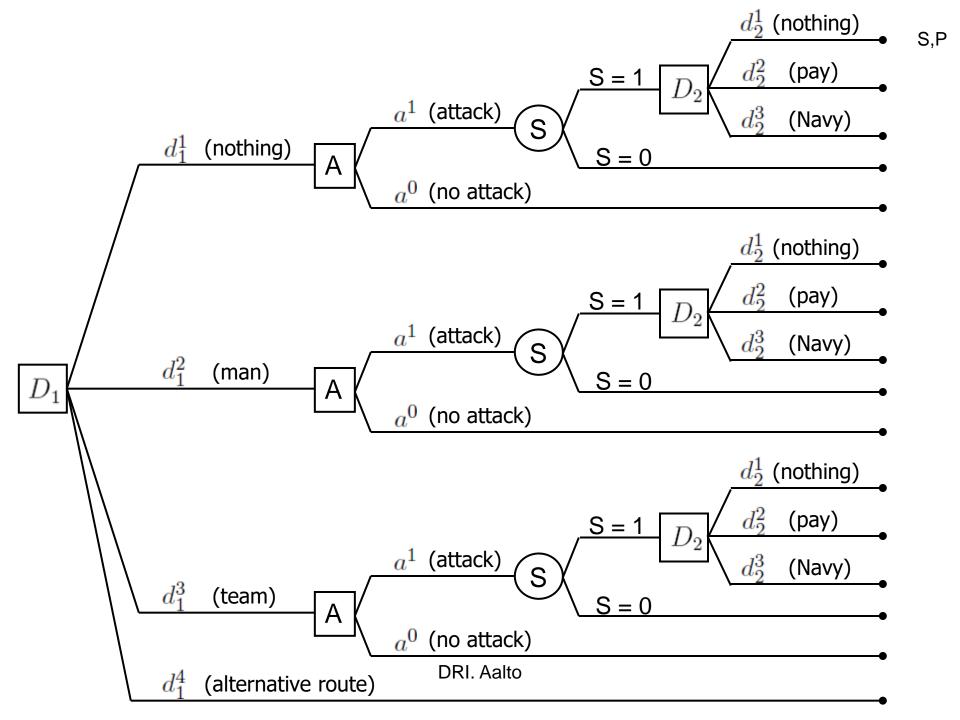
Piracy and armed robbery incidents reported to the IMB Piracy Reporting Centre DRI. Aalto 2011

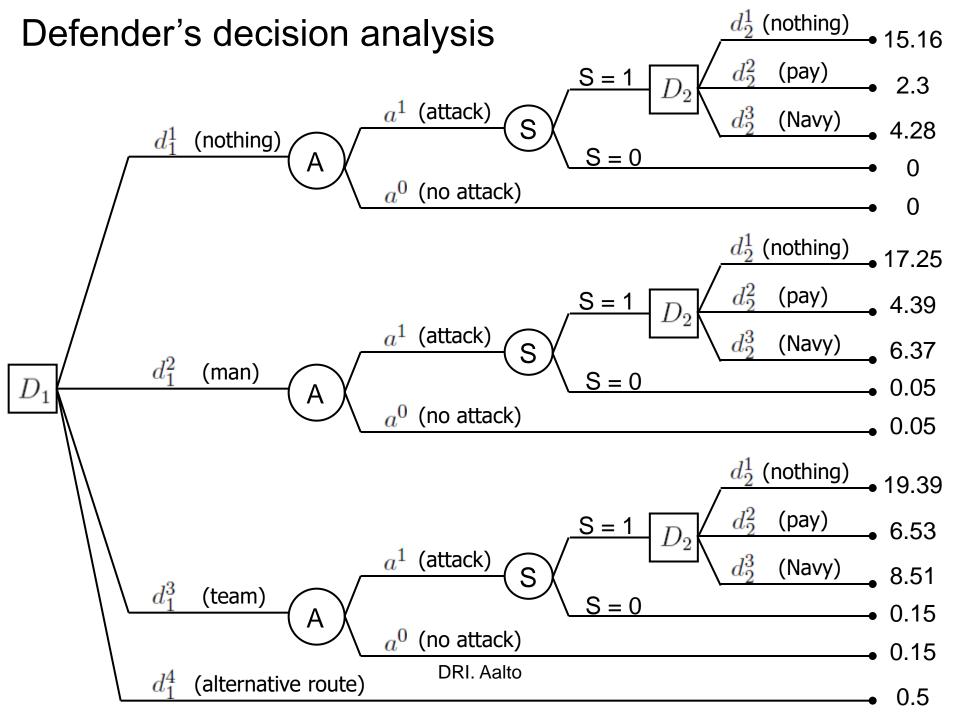
The Defend-Attack-Defend model

- Two intelligent players
 - Defender and Attacker
- Sequential moves
 - First, Defender moves
 - Afterwards, Attacker knowing Defender's move
 - Afterwards, Defender again responding to attack

The Somali Pirates Case: Problem formulation

- Two players
 - Defender: Ship owner
 - Attacker: Pirates
- Defender first move
 - Do nothing
 - Private protection with an armed person
 - Private protection with a team of two armed persons
 - Go through the Cape of Good Hope avoiding the Somali coast
- Attacker's move
 - Attack or not to attack the Defender's ship
- Defender response to an eventual kidnapping
 - Do nothing
 - Pay the ransom
 - Ask the Navy for support to release the boat and crew

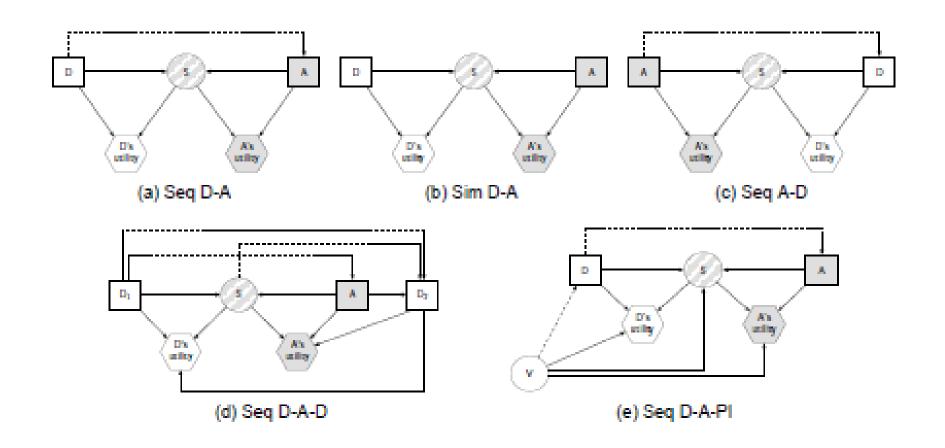




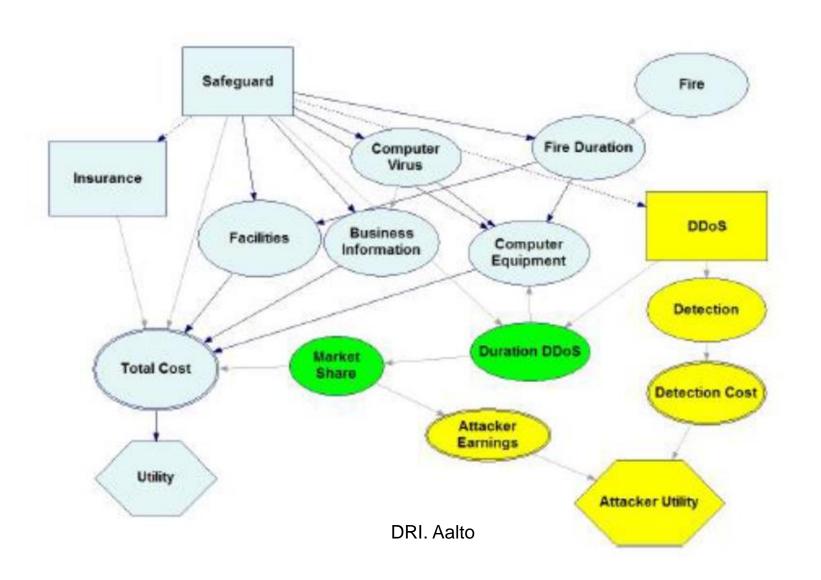
ARA: Cases

Problem	Defender	Attacker	Specificities	Template
ATC protection	Airport authority	Terrorist	Single site	D-> A
Piracy	Ship owner	Pirates	Single site	D- >A - > D
Metro	Operator	Pickpock Fare evasion	Multisite Multiattack, Cascade	D->A
Urban security	Police	Mob	Multisite spatial	D->A->D
Train	DoT, DoD	Terrorist	Multisite network	D->A->D
Reliability	Manufacturer	Customer		D->A
SME IS	Company	Competitor	Cyber, Integrated with RA	D->A
Oil rig cybercontrolled	Oil company	Sponsored hackers	Cyber, Multiattack	D->A->D
UAV fight	Country	Country	Multisite	D->A->D
CI	Owner	Terrorist	Multistage	General
Cybersec res allocation+cybins	IT Owner	Hacker(s)	Several decisions Random and targeted attacks	D-A, D-A-D
Social robots	Robot	DRI. Aalto User	Sequential	D->A

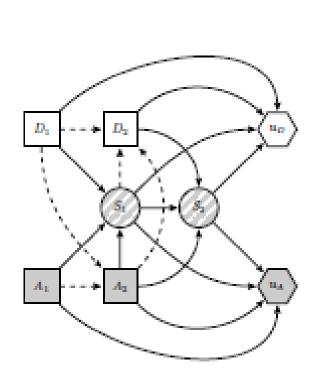
ARA templates

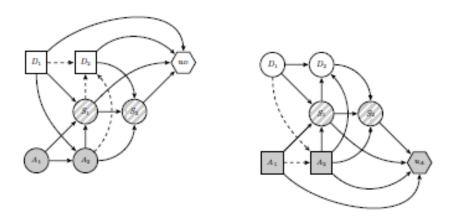


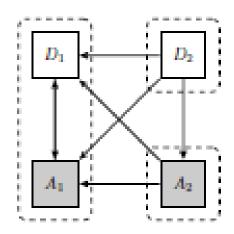
ARA templates



More general interactions







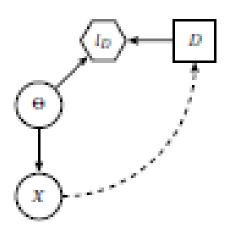
DRI. Aalto

More general interactions

Algorithm 2 General computational strategy. Cyclic case

```
Data: BAID B; a topological ordering N_1, \dots, N_r of the component graph derived from the relevance graph
         for B; the associated IDs for defender D and attacker A; the decision sequences D_1, ..., D_m and
         A_1, \dots, A_n, respectively, relative to \mathcal{D} and \mathcal{A}.
  1: For i = 1 to r do
        While N_i \cap D^A \neq \emptyset do
           Find j = \max\{k \mid A_k \in \mathcal{N}_i\}.
  3:
         While A_i \in A do
 4:
 5:
            Apply Algorithm A.1 to A using A-reductions.
 6:
         End While
       End While
 7:
 8:
       While N_i \neq \emptyset do
         Find j = \max\{k \mid D_k \in \mathcal{N}_i\}.
9:
         While D_j \in \mathcal{D} do
10:
            Apply Algorithm A.1 to D using D-reductions.
11:
12:
         End While
       End While
14: End For
```

Statistical Decision Theory



$$d^*(x) = \underset{d}{\operatorname{arg\,min}} \int l_D(d,\theta) \, p_D(\theta \mid x) \, d\theta.$$

$$d^*(x) = \underset{d}{\operatorname{arg\,min}} \int l_D(d, \theta) \, p_D(x \mid \theta) \, p_D(\theta) \, d\theta,$$

Point estimation under quadratic loss

$$l_D(d, \theta) = (\theta - d)^2$$
,

$$d^*(x) = \frac{1}{p_D(x)} \int \theta \, p_D(x \mid \theta) \, p_D(\theta) \, d\theta = \int \theta \, p_D(\theta \mid x) \, d\theta = E\left[\theta \mid x\right]$$
DRI. Aalto

Adversarial Statistical Decision Theory



$$\lambda = a + \theta$$

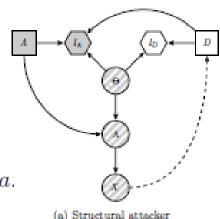
Quadratic loss

$$d^*(x) = \underset{d}{\operatorname{arg\,min}} \iiint (\theta - d)^2 p_D(x \mid \lambda) p_D(\lambda \mid \theta, a) p_D(\theta) p_D(a) d\lambda d\theta da.$$

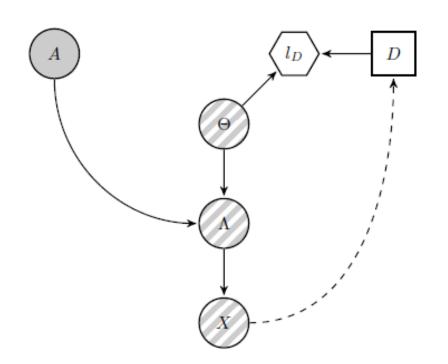
$$d^*(x) = \arg\min_{\theta} \iint (\theta - d)^2 p_D(x \mid \lambda = \theta + a) p_D(\theta) p_D(a) d\theta da$$

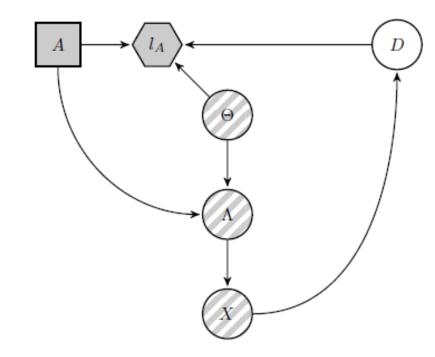
$$d^{*}(x) = \frac{1}{p_{D}(x)} \iiint \theta \, p_{D}(x \mid \lambda) \, p_{D}(\lambda \mid \theta, a) \, p_{D}(\theta) \, p_{D}(a) \, \mathrm{d}\lambda \, \mathrm{d}\theta \, \mathrm{d}a$$
$$d^{*}(x) = \frac{1}{p_{D}(x)} \iiint \theta \, p_{D}(x \mid \lambda) \, p_{D}(\lambda \mid \theta) \, p_{D}(\theta) \, \mathrm{d}\lambda \, \mathrm{d}\theta$$

$$= \frac{1}{p_D(x)} \int \theta \, p_D(x \, | \, \theta) \, p_D(\theta) \, \mathrm{d}\theta \, \mathrm{d}\theta$$



 $p_D(a)$





A Bayesian adversary

$$a_B^* = \underset{a}{\operatorname{arg\,min}} \iiint l_A(d, a, \theta) \, p_A(d \mid x) \, p_A(x \mid \lambda = \theta + a) \, p_A(\theta) \, \mathrm{d}d \, \mathrm{d}x \, \mathrm{d}\theta.$$

$$A_B^* = \underset{a}{\operatorname{arg\,min}} \iiint L_A(d, a, \theta) P_A(d \mid x) P_A(x \mid \lambda = \theta + a) P_A(\theta) \, \mathrm{d}d \, \mathrm{d}x \, \mathrm{d}\theta$$

$$p_D^B(a) = P(A_B^* = a).$$

$$A_{B,k}^* = \underset{a}{\operatorname{arg\,min}} \iiint L_A^k(d,a,\theta) \, P_A^k(d \mid x) \, P_A^k(x \mid \lambda = \theta + a) \, P_A^k(\theta) \, \mathrm{d}d \, \mathrm{d}x \, \mathrm{d}\theta$$

$$\hat{p}_D^B(A=a) \approx \#\{A_{B,k}^* = a\}/K$$

• Mixture, e.g.

$$\pi_B\,\hat{p}^B_D(a)$$
 $\pi_B\,\hat{p}^B_D(a)$

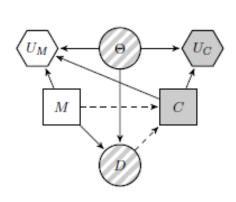
Normal-normal model, for certain parameter choices

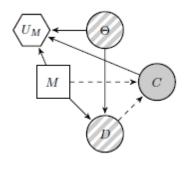
Solution Concept	Optimal Solution		
Non-adversarial	$\frac{4\sum_{i=1}^{n} x_i}{4n+1}$		
ARA: Minimax adversary	$\frac{4\sum_{i=1}^{n} x_i}{4n+1}$		
ARA: Bayesian adversary	$\frac{4(0.318\xi(x,0)\sum_{i=1}^{n}x_i + 0.682\xi(x,1)\sum_{i=1}^{n}(x_i-1))}{(0.318\xi(x,0) + 0.682\xi(x,1))(4n+1)}$		
ARA: Uncertain concept	$\frac{4(0.545\xi(x,0)\sum_{i=1}^{n}x_i + 0.455\xi(x,1)\sum_{i=1}^{n}(x_i-1))}{(0.545\xi(x,0) + 0.455\xi(x,1))(4n+1)}$		

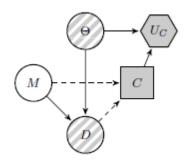
$$\xi(x,a) = \exp\left(\frac{\frac{(\mu_D \, \rho_D^2 + \sigma_D^2 \, \sum_{i=1}^n (x_i - a))^2}{\rho_D^2 + n \, \sigma_D^2} - \sigma_D^2 \, \sum_{i=1}^n (x_i - a)^2}{\mathsf{DRI}_2 \mathsf{Aplica}_D}\right)$$

Adversarial reliability

Acceptance sampling

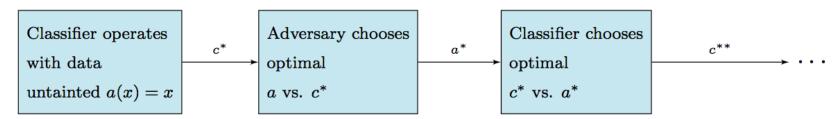






Adversarial classification as a game

- C, classifier. A, adversary
- Two classes: + malicious; innocent.
- C and A maximise expected utility under common knowledge conditions
- Finding Nash equilibria extremely complex
- Dalvi et al (2004) propose a scheme

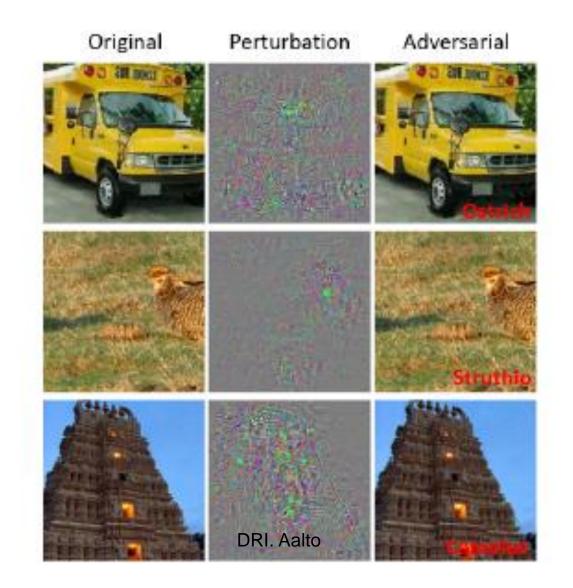


Utility sensitive Naive Bayes Forward myopic approach under strong common knowledge

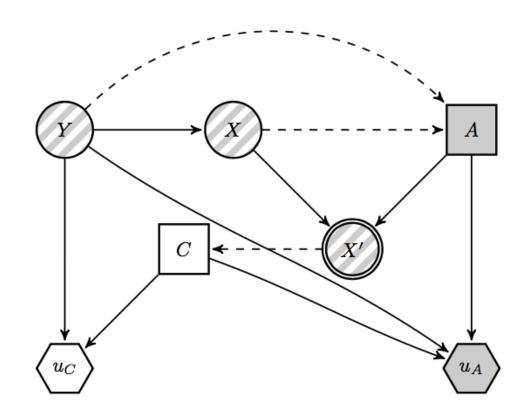
Adversarial problems

- Adversarial classification (Dalvi et al,...)
- Adversarial signal processing (Barni et al,..)
- Adversarial learning (Lowd and Meek,..)
- Adversarial machine learning (Tygar,..)
- Adversarial SVMs (Zhou et al,...)
- •

Adversarial problems



Adversarial classification through ARA. ACRA



ACRA. Classifier problem

$$\begin{split} c(x') &= \underset{y_C}{\arg\max} \sum_{y \in \{+,-\}} u_C(y_C,y) p_C(y|x') = \underset{y_C}{\arg\max} \sum_{y \in \{+,-\}} u_C(y_C,y) p_C(y) p_C(x'|y) = \\ &= \underset{y_C}{\arg\max} \sum_{y \in \{+,-\}} u_C(y_C,y) p_C(y) \sum_{x \in \mathcal{X}'} \sum_{a \in \mathcal{A}(x)} p_C(x',x,a|y). \end{split}$$

.....

$$= \underset{y_C}{\operatorname{arg\,max}} \left[u_C(y_C, +) p_C(+) \sum_{x \in \mathcal{X}'} p_C(a_{x \to x'}|x, +) p_C(x|+) + u_C(y_C, -) p_C(x'|-) p_C(-) \right]$$

ACRA. Adversary problem

$$a^*(x,y) = rg \max_a \int \left[u_A(c(a(x)) = +,y,a) \cdot p + u_A(c(a(x)) = -,y,a) \cdot (1-p) \right] f_A(p|a(x)) dp.$$

$$\int \left[u_A(+,+,a) \cdot p + u_A(-,+,a) \cdot (1-p) \right] f_A(p|a(x)) dp = \left[u_A(+,+,a) - u_A(-,+,a) \right] p_{a(x)}^A + u_A(-,+,a).$$

$$A^*(x,+) = rg \max_a \left(\left[U_A(+,+,a) - U_A(-,+,a) \right] P_{a(x)}^A + U_A(-,+,a) \right)$$
 random version of
$$p_C(a|x,+) = Pr(A^*(x,+) = a)$$

$$p_A^A = \int p f_A(p|a(x)) dp$$

$$P_A(c|x') \sim \beta e(\delta_1, \delta_2)$$

$$\longrightarrow \frac{\delta_1}{\delta_1 + \delta_2} = Pr_A(c(x') = +)$$

ACRA. Spam detection approach

1. Preprocessing

Train a probabilistic classifier to estimate $p_C(y)$ and $p_C(x|y)$, assuming that the training set has not been tainted.

2. Operation

Read x'.

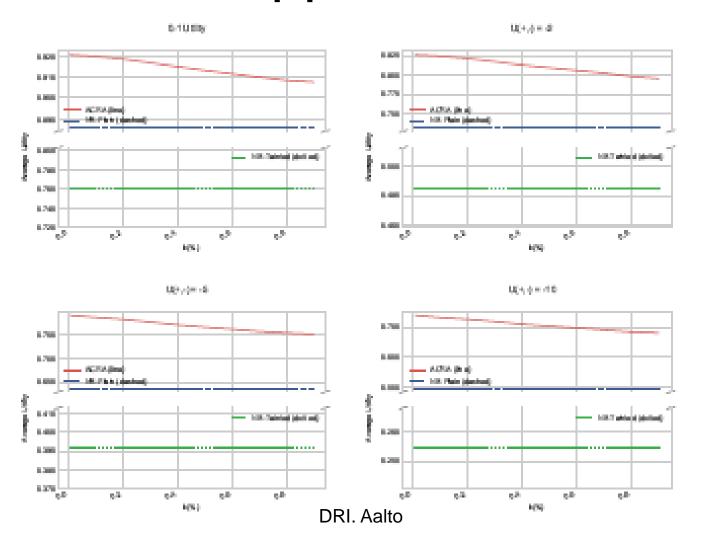
Estimate $p_C(a_{x \to x'}|x, +)$.

Solve

$$c(x') = \operatorname*{arg\,max}_{y_C} \left[u(y_C, +) \widehat{p}_C(+) \sum_{x \in \mathcal{X}'} \widehat{p}_C(a_{x \rightarrow x'}|x, +) \widehat{p}_C(x|+) + u(y_C, -) \widehat{p}_C(x'|-) \widehat{p}_C(-) \right].$$

Output c(x').

ACRA. Spam detection approach



ACRA. Computational enhancements

$$= \arg \max_{y_C} \left[u_C(y_C, +) p_C(+) \sum_{x \in \mathcal{X}'} p_C(a_{x \to x'}|x, +) p_C(x|+) + u_C(y_C, -) p_C(x'|-) p_C(-) \right]$$

Note first that the optimization problem (1) may be reformulated as setting c(x') = + if and only if $\sum_{x \in X'} p_C(a_{x \to x'}|x, +) p_C(x|+) > t$, where

$$t = \frac{\left[u_C(-, -) - u_C(+, -)\right] p_C(x'|-) p_C(-)}{\left[u_C(+, +) - u_C(-, +)\right] p_C(+)}.$$

$$I = \frac{1}{N} \sum_n p_C(a_{x_n \to x'}|x_n, +) I(x_n \in \mathcal{X}') > t.$$

Importance sampling. Sequentially decide

estimation of $p_C(a_{x \to x'}|x, +)$ Small Monte Carlo sample size

$$\widehat{p}_C(a_{x \to x'} | x, +) \simeq \frac{\#\{a_k^* = a_{x \to x'}\} + 1}{K + |(A(x))|}.$$

ACRA computational enhancements

	Size	Accuracy	FPR	FNR
ACRA	1.00	0.919	$1.87 \cdot 10^{-2}$	$1.77 \cdot 10^{-1}$
MC ACRA	0.75	0.912	$3.20 \cdot 10^{-2}$	$1.74 \cdot 10^{-1}$
MC ACRA	0.50	0.905	$2.70 \cdot 10^{-2}$	$1.99 \cdot 10^{-1}$
MC ACRA	0.25	0.885	$2.09 \cdot 10^{-2}$	$2.60 \cdot 10^{-1}$
NB-Plain	-	0.886	$6.77\cdot 10^{-2}$	$1.85\cdot 10^{-1}$
NB-Tainted	_	0.761	$6.77 \cdot 10^{-2}$	$5.00 \cdot 10^{-1}$

20000	0.25	6000-		
	0.5	4000- Mean Median	0.5	Mean Median
0	0.75	2000-		1
0 10 20 30 Speed Up			0 5 10 15 20 Speed Up	
(a)			(b)	

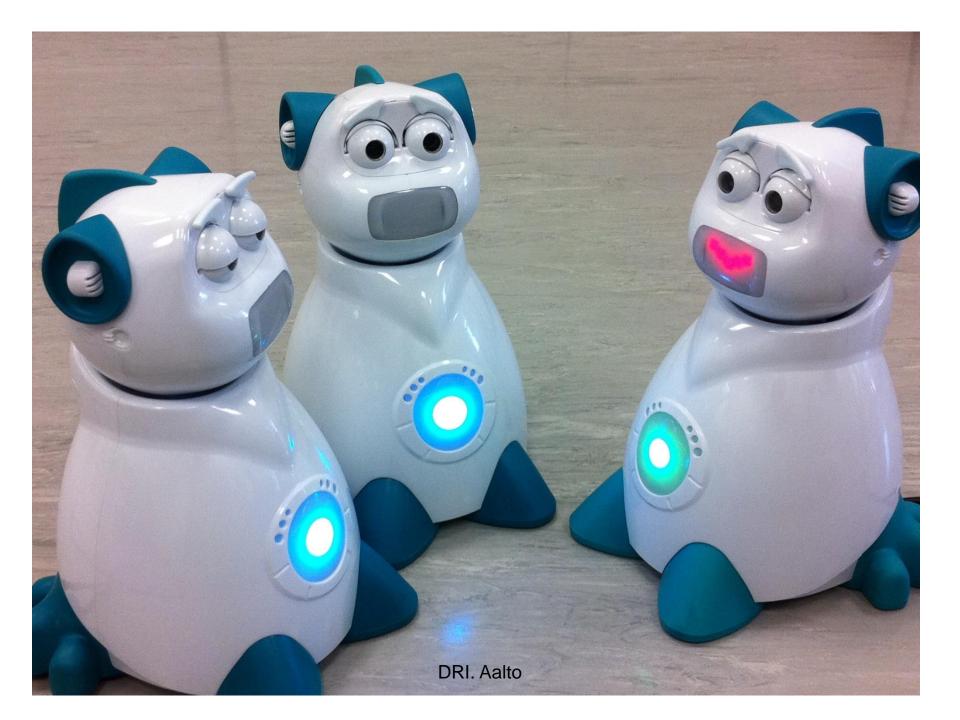
Size	Mean	Median
0.25	6.20	3.69
0.50	5.30	2.00
0.75	4.86	1.31

	Dataset	Size	Accuracy	FPR	FNR
MC ACRA	UCI	0.5	0.904	$3.69\cdot 10^{-2}$	$1.87\cdot 10^{-1}$
NB-Plain	UCI	-	0.887	$6.56 \cdot 10^{-2}$	$1.87 \cdot 10^{-1}$
NB-Tainted	UCI	-	0.724	$6.56 \cdot 10^{-2}$	$6.01 \cdot 10^{-1}$
MC ACRA	Enron-Spam	0.5	0.824	$1.32\cdot 10^{-1}$	$3.05\cdot 10^{-1}$
NB-Plain	Enron-Spam	-	0.721	$2.83\cdot 10^{-1}$	$2.68\cdot 10^{-1}$
NB-Tainted	Enron-Spam	-	0.534	$2.83 \cdot 10^{-1}$	1.00
MC ACRA	Ling-Spam	0.5	0.958	$3.90\cdot 10^{-2}$	$5.68\cdot10^{-2}$
NB-Plain	Ling-Spam	-	0.957	$4.00 \cdot 10^{-2}$	$5.75 \cdot 10^{-2}$
NB-Tainted	Ling-Spam	-	0.800	$4.00\cdot 10^{-2}$	1.00

Table 3: Comparison between MC ACRA and NB under 2-GWI attacks.

ARA vs GT

- Provide different solutions
- Dominance and ARA
- 'Iterated dominance' and ARA
- Ficticious play and ARA
- Level-k and ARA
- GT, Sensitivity analysis, If sensitive, ARA.
- Different types of adversaries

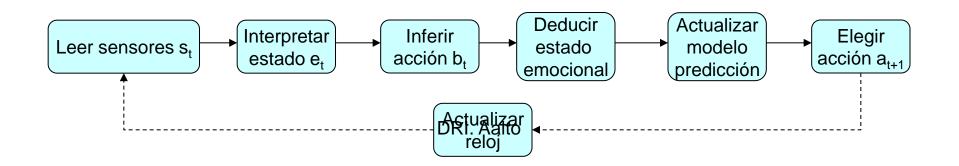


Problem

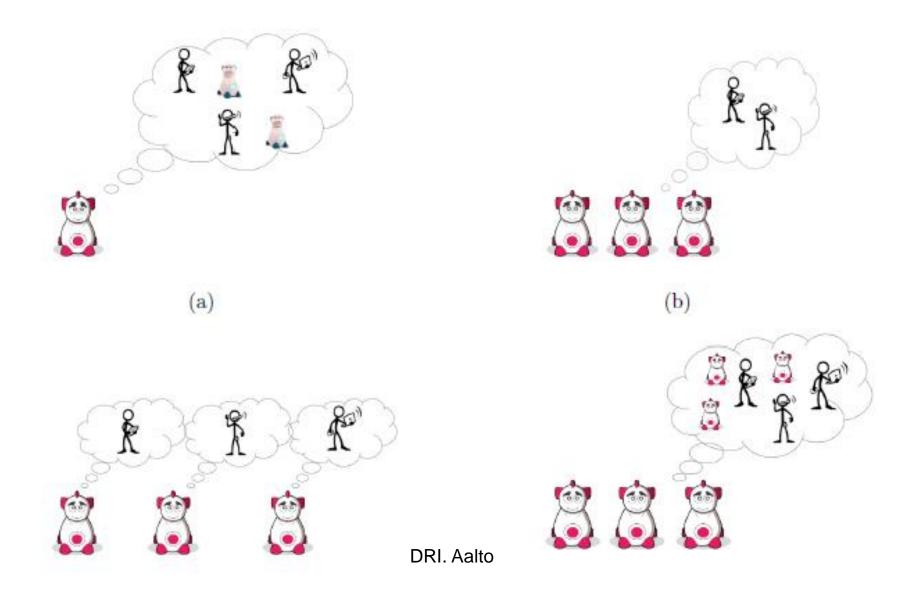
- An agent makes decisions in a finite set
- · Has sensors providing information around it
- · It relates with a user which makes decisions
- They're both within an environment which evolves (under the control of the user)

Basic framework

$$\max_{a_t \in \mathcal{A}} \psi(a_t) = \sum_{b_t, e_t} u(a_t, b_t, e_t) \times p(b_t, e_t \mid a_t, (a_{t-1}, b_{t-1}, e_{t-1}), (a_{t-2}, b_{t-2}, e_{t-2}))$$



Basic framework



Single-stage computational schemes

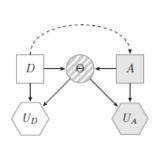
Augmented probability simulation

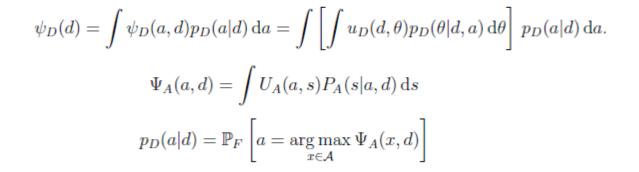
$$\max_{x \in \mathcal{X}} \int u(x, \theta) p(\theta|x) \, \mathrm{d}\theta,$$

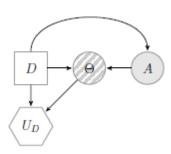
$$\pi(x, \theta) \propto u(x, \theta)p(\theta|x)$$
.

$$\pi(x) \propto \int u(x, \theta)p(\theta|x) d\theta$$

Single-stage computational schemes







$$\Pi_A(a, \theta_A|d) \propto U_A(a, \theta_A) P_A(\theta_A|a, d)$$
 $A^*(d) = \text{mode}(\Pi_A(a|d))$

$$\pi_D(d, a, \theta_D) \propto u_D(d, \theta_D) \ p_D(\theta_D|a, d) \ p_D(a)$$

$$D \longrightarrow O \longrightarrow A$$

$$U_A$$

$$d^* = \text{mode}(\pi_D(d))$$

DRI. Aalto

```
input: N, M, J
for d \in \mathcal{D} do
for j=1 to J do

Sample U_A^j, P_A^j and define \Pi_A^j
Initialize \theta_A^0
for i=1 to M do

Sample a^{(i)} from \Pi_A^j(a|\theta_A^{(i-1)},d)
Sample \theta^{(i)} from \Pi_A^j(\theta_A|a^{(i)},d)
Estimate a_j^* as mode of \{a^{(i)}\}
         Estimate p_D(a|d) from \{a_j^*\}
Initialize (d^{(0)}, \theta_D^{(0)})
for i = 1 to N do
       Draw d^{(i)} from \pi_D(d|a^{(i-1)}, \theta_D^{(i-1)})

Draw \theta_D^{(i)} from \pi_D(\theta_D|a^{(i-1)}, d^{(i-1)})

Draw a^{(i)} from \pi_D(a|d^{(i)}, \theta_D^{(i)})
Estimate d^* as mode of \{d^{(i)}\}
```

Discussion

- Traditional statistical/ML/risk analysis problems perturbated by presence of adversaries
- Traditionally treated from a game theoretic perspective (common knowledge)
- An ARA approach to mitigate common knowledge
- Different opponent models, beyond SEU
- Concept uncertainty, Mixtures
- Robustness and ARA (GT, ARA, Robust ARA)

Other themes

- Differential games
- Multiagent reinforcement learning
- Competition and cooperation
- Cybersecurity and cyberinsurance: CYBECO
- Efficient computational schemes
- Computational environment
- Fake news
- Malware detection
- Attacker models
- Generative adversarial networks
- Generic approach: point estimation, interval estimation,...
- Multiple attackers, Multiple defenders

Thanks!!!

Collabs welcome

david.rios@icmat.es

SPOR DataLab https://www.icmat.es/spor/
Aisoy Robotics https://www.aisoy.com
It's a risky life @YouTube
CYBECO https://www.cybeco.eu/